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was initially achieved by performing a Laplace trans-
form to obtain the shear modulus G(s) in terms of the
Laplace frequency and then using analytical continua-
tion on the basis that s = iw to determine G*(w) [5].

                                                           (1)

                                              (2)

Mason proposed an alternative approach for estimating
the required Fourier transform of the MSD algebraically
by using a power law expression to describe the change
in the local MSD with time at any given time point [6].
A benefit of this approach is that it does not require the
use of numerical transforms (and associated truncation
errors) or arbitrary functional forms im pli cit with the
Fourier transformation. Mason, highlighted the need to

1      INTRODUCTION

Microrheology techniques involve tracking the motion
of dispersed probe (or tracer) particles in a complex flu-
id, to extract local and bulk rheological properties of the
matrix. Analogous to mechanical rheo metry tech-
niques, a stress is applied to the system by motion of
the probe particle, and the deformation (or strain) is
measured through changes in the probe particle posi-
tion. Dynamic Light Scattering (DLS) Microrheology is
classified as a passive technique, whereby the colloidal
probe particles undergo thermal fluctuations in a sys-
tem at thermodynamic equilibrium. The Mean Square
Displacement (MSD) or áDr2(t)ñ of the probe particles
with time is followed by DLS, to enable linear viscoelas-
tic parameters for the complex fluid matrix to be
extracted [1 – 4]. In the implementation of microrheol-
ogy, the viscoelastic moduli of a sample from the mean
square displacement of embedded tracers is calculated
using a generalised form of the Stokes-Einstein equa-
tion (Equation 1) as outlined by Mason and Weitz [1].
This requires Fourier transformation of áDr2(t)ñ, which

An Algebraic Approach for Determining Viscoelastic Moduli
from Creep Compliance through Application of the Generalised

Stokes-Einstein Relation and Burgers Model

John J. Duffy1*, Carlos A. Rega1,2*, Robert Jack1, Samiul Amin3

1Malvern Instruments Ltd, Enigma Business Park, Grovewood Road, Malvern, WR141XZ, UK
2Malvern Instruments, 7221 Lee Deforest Drive, Suite 300 Columbia Maryland, USA

3Current address: ABB Ltd, Oldends Lane, Stonehouse, GL10 3TA Glo, UK

* Corresponding author: john.duffy@malvern.com

Received: 12.10.2016, Final version: 18.1.2016

Abstract:
DLS Microrheology involves tracking the time dependent motion or mean square displacement of dispersed tracer particles
of known size using Dynamic Light Scattering (DLS) in order to determine viscoelastic properties of the dispersion medium.
The viscoelastic moduli are calculated using a generalised form of the Stokes-Einstein equation which requires Fourier Trans-
formation of the MSD. An alternative approach for estimating the viscoelastic moduli uses a modified algebraic form of the
generalized Stokes-Einstein equation, which employs a power law expression to describe the local change in MSD with time.
Since the mean square displacement is linearly related to the creep compliance, it can be shown that the same algebraic
approach can also be applied to creep measurements made on a rotational rheometer, giving access to the low frequency
moduli in a fraction of the time required for oscillatory testing. Furthermore, the quality of the conversion process can be
improved by fitting a Burgers model to the time domain data prior to conversion thus minimising errors associated with local
differentiation, which is fundamental to the conversion approach.

Key words:
Burgers model, creep compliance, microrheology, viscoelastic modulus, low frequency, interconversion

| DOI: 10.3933/APPLRHEOL-26-15130 | WWW.APPLIEDRHEOLOGY.ORG

mailto:john.duffy@malvern.com


better account for curvature in ln áDr2(t)ñ versus ln t,
which has been expanded on by Dasgupta et al. [7].
Another approach has been used by Tassiero et al. [8]
based on the method of Evans [9], which uses a piece-
wise linear function to determine the Fourier transform.
This approach has also been applied to creep data. The
algebraic expression proposed by Mason [6] can be writ-
ten as

                                 (3)

with a(w) the local power index given by Equation 4
estimated at t = iw and G is the gamma function, which
is an extension of the factorial function and when
employed in the above form can be equated with a local
Fourier transform of the MSD.

                                                   (4)

For thermally-driven motion of the probe particles, the
slope of the logarithmic time derivative of the mean
square displacement will be unity in a purely viscous
medium (diffusive motion), zero in an elastic medium
(completed arrested motion), and will lie between
these extremes in a complex viscoelastic fluid medium.
This can be equivocated with the phase angle or phase
lag d measured using dynamic measurements on a
rotational rheometer, where d = pa(w)/2. Consequently
the frequency dependent viscoelastic moduli G’(w) and
G’’(w) can be determined using Euler's theorem

                                            (5)

A relationship between the MSD of a tracer embedded
in a viscoelastic fluid and the creep compliance of that
fluid J(t) can also be established since in the Laplace fre-
quency domain J(s) = 1/G(s), hence based on Equation 1
it can be shown J(t) and áDr2(t)ñ are linearly related
according to Equation 6 [10 – 12]. A microrheology ex -
periment can therefore be considered analogous to a
mechanical creep test performed in the linear viscoelas-
tic regime and data can be presented in a common rhe-
ological format using J(t) without the need for transfor-
mation to the frequency domain [13].

                                                           (6)

Furthermore, the mean square displacement in Equa-
tion 2 can be substituted with the creep compliance to
give the following relation

                                                (7)

with

                                                            (8)

Therefore, the methods developed for obtaining vis-
coelastic properties from the MSD in a microrheology
measurement can be equally applied to the creep com-
pliance, thus facilitating an approach for converting the
time dependent creep compliance to frequency depen-
dent moduli for measurements made on a rotational
rheometer. A key benefit of this approach is that it does
not require oversampling of data as with alternative
methods [8, 9] hence it can be used to transform exist-
ing data obtained at discrete time intervals quite easily
so long as an accurate estimate of a(w) can be made.
         A limitation of the algebraic approach for both
microrheology and creep testing is that it requires local
differentiation of the áDr2(t)ñ or J(t) versus time curves,
which can lead to errors in the value of a(w) and hence
the quality of the converted data, particularly G’(w) and
G’’(w). Unlike a dynamic oscillatory test where data can
be integrated for an extended period at a discrete oscil-
lation frequency, each data point is recorded instanta-
neously in a creep measurement hence integrating is
not really feasible unless the integration window is
much smaller than the recorded time increments.
Another, option is to fit the data with a polynomial;
however, a classical problem of fitting with polynomi-
als is oscillatory artifices, which are further exacerbated
on differentiating the data.
         In such circumstances a more viable approach may
be to model the data with an appropriate functional
form and to perform the conversion on the fitted data,
hence minimizing errors due to local noise. Such an
approach is common and indeed necessary when using
DLS to determine the size distribution of a dispersion,
where the Autocorrelation Function (ACF) is fitted using
the method of cumulants to give a Z-average diameter
and polydispersity index [13] or a multiple exponential
decay function to give a size distribution, with each
relaxation time corresponding with a particular size
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class [15, 16]. Such a function may be expected to fit rhe-
ological data similarly well if demonstrating typical
Maxwell like behavior, however, when probing short
time dynamics of viscoelastic materials which can
demonstrate pseudo-gel behavior as with microrheol-
ogy, there is a need to account for Kelvin-Voigt behavior
also. Hence, a more suitable model is the Burgers model
or Creep model (Equation 9) which is commonly used
for fitting creep compliance curves and is a standard
rheological model for describing linear viscoelastic
behavior [17 – 19].

                                          (9)

Because of the linear relationship between creep com-
pliance and mean square displacement the Burgers
model is equally applicable to microrheology also. Fur-
thermore, the Burgers model is similar to the coupled
harmonically bound Brownian particle (c-HBBP) model
discussed by Khan and Mason for describing micro -
rheological behavior of generalized linear viscoelastic
(GLVE) complex fluids, further justifying its use for
probe based microrheology [20]. A key advantage of fit-
ting with a functional form of this type which is monot-
onically increasing is that it respects a-priori knowledge
about the system; that is we expect that the mean
squared displacement or creep compliance is monoto-
nically increasing with time (its derivative is positive-
semi definite). Furthermore, as the determination of
the intercept is crucial for determining the mean square
displacement in a DLS-microrheology measurement,
since áDr2(t)ñ µ [log g(0) - log g(t)], then shorter diffusion
times or delay times can lead to negative values of the
mean square displacement which are then unusable in
the determination of a(w). An approach which involves
fitting J0, the intercept in the Burgers model, allows one
to fit out any such uncertainties.
         Fitting a retardation spectrum to J(t) curves ob -
tained from microrheology measurements has previ-
ously been presented by Mason et al. [12]. In this work
they calculated the retardation spectrum by fitting a
Kelvin-Voigt model with multiple retardation times
and used this to calculate the viscoelastic moduli. While
the data fit was good over times where the material
showed Kelvin-Voigt behavior, at longer times this was
likely due to the exclusion of a Maxwell term in the fit-
ting function, something which a Burgers model
addresses. In this paper we demonstrate the applicabil-
ity of Equation 7 for converting creep compliance to vis-
coelastic moduli and the use of the Burgers model for
accurately fitting áDr2(t)ñ and J(t) to improve the quality
of the conversion process.

2     MATERIALS AND METHODS

FLOPAAM 3230s polymer (Polyacrylamide powder sup-
plied by SNF Floerger) with a molecular weight ranging
between 6 – 8 MDaltons was dispersed in deionized
water to give a final concentration of 1 mg/ml. Carboxy-
lated Melamine microspheres with a particle diameter
of 1.1 mm were used as tracers for the DLS-microrheology
measurements, which were performed on a Zetasizer
Nano ZSP (Malvern Instruments) using the non-inva-
sive back-scattering (NIBS) configuration, which uses a
scattering angle of 173 ° and a moving lens arrangement
[21]. Zeta potential measurements were used to ensure
minimal interaction between tracer particle and sam-
ple by comparing the zeta potential of tracer in solvent
with and without polymer present [22, 23]. A sufficient
concentration of tracers was added to each sample to
ensure dominant scattering over the polymer. This cri-
terion was considered to have been met when the par-
ticle size distribution determined on the same instru-
ment, contained a single peak attributable to the tracer
particles. In this case 5 mg of the 10 %(w/v) tracer sus-
pension in 1000 mL of sample was found to be sufficient.
Creep and oscillatory measurements were made using
a Kinexus Pro+ rotational rheometer with a cone-plate
measuring system. All microrheology and rotational
rheometer measurements were made at 25 °C. 

3     RESULTS AND DISCUSSION

Figure 1 shows a plot of the calculated MSD against time
for the polyacrylamide solution and the corresponding
multiple Burgers model fit, based on 10 retardation
time constants. The observed curvature in the MSD
demonstrate regions of sub-diffusive behavior charac-
teristic of a viscoelastic fluid and such behavior seems
to be well described by the Burgers model with no dis-
cernible difference between the original data and fitted
data observed. For the range of data shown the differ-
ence in the fitted and original values of the MSD com-
pared at each discrete time point was less than 2 %. Fig-
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Figure 1: MSD versus time plot comparing original data and
fitted data (Burgers model).



ure 2 shows G’ and G’’ plotted against angular frequen-
cy following conversion of both the original and fitted
MSD. Clearly there is an improvement in the quality of
the converted data following model fitting while
retaining all the key features of the original data set. 
         Figure 3 shows G’(w) and G’’(w) plotted against
angular frequency following conversion from J(t). The
top chart in Figure 3 shows an overlay of data converted
with and without the use of the Burgers model. As with
the MSD this demonstrates that the Burgers model pro-
vides a good fit to the creep data and improves the qual-
ity of the conversion process. The bottom chart in Fig-
ure 3 shows the model fitted data plotted alongside
oscillatory data. The agreement between the two data
sets is excellent thus validating the use of Equation 7
for transforming creep data measured on a rotational
rheometer. A key benefit of this approach is the mea-
surement time needed to access low frequency data. To
get to 0.001 rad/s as shown in Figure 3 would take 1000
seconds or about 17 minutes using a creep test. Since
each time point corresponds with an angular frequency
then theoretically all frequencies up to 1/t can be sam-
pled continuously, subject to sample and instrument
constraints. In comparison a full oscillation cycle at
0.001 rad/s would take 6283 seconds, which equates to
approximately 1 hour 45 minutes, and that corresponds
to a single data point at that frequency. While the use
of partial wave or multiwave oscillatory testing may
reduce the time for testing over a range of frequencies
it would still be considerable compared with a direct
time or creep measurement.
         Through using a combination of microrheology, on
length scales corresponding with bulk material behav-
ior, and rotational rheometry in creep and oscillatory
modes, it is therefore possible to access a wide range of
timescales and frequencies. This is demonstrated in Fig-
ure 4 which combines data from Figure 2 (right) and Fig-
ure 3 (right). In this particular case rheological proper-
ties have been determined over 8 decades of frequency.
To further validate the approach another polyacry-
lamide sample (Hengfloc 63026 supplied by Beijing

Hengu) was evaluated at two different concentrations
(1 and 2 mg/ml) in a brine solution with 1 mm PEGylated
polystyrene beads used as tracers. PEGylated tracers
worked better than carboxylated melamine in these
brine systems with the latter showing evidence of sam-
ple interaction and aggregation. The results are shown
in Figure 5 and as with the Flopaam sample show excel-
lent agreement between rotational rheometry (creep
and oscillation) and microrheology measurements
while clearly demonstrating the effect of concentration
on viscoelastic behavior.
         The excellent agreement between rotational rheo -
metry and microrheology measurements on polyacry-
lamide solutions has also been observed by Pomella et
al. [24]. They studied dilute polyacrylamide solutions
with very low viscoelasticity using optical tweezers and
bulk rheology and found ‘remarkable’ agreement
between these two techniques. Such agreement is sup-
ported by the work of Cai et al., who used scaling theory
to derive the time dependence of the mean-square dis-
placement áDr2(t)ñ of spherical probe particle of differ-
ent sizes in polymer solutions and melts [25]. Three dif-
ferent cases for particle diffusion were proposed
depending on the relative size of the particle with
respect to the correlation length ξ and the tube diam-
eter a of an entangled polymer system. They showed
that for probe particles which are large enough to
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Figure 2: Plots of G' and G" against angular frequency follow-
ing conversion from MSD using original data (filled symbols)
and fitted data (lines).

Figure 3: Plots of G' and G" against angular frequency follow-
ing conversion from J(t) measured on a rotational rheometer
using (top) original data and (bottom) fitted data compared
with oscillatory data.



become trapped within the entanglement mesh (d > a),
particle diffusion is governed by the relaxation rate of
the polymer. Consequently one would expect good
agreement between microrheological and bulk rheo-
logical measurements if (d > a) providing there is min-
imal interaction between tracer and sample. 

4     CONCLUSIONS

DLS-microrheology can be used to extend rheological
measurements in to the high frequency domain using
an algebraic form of the generalised Stokes Einstein
equation. Since the mean square displacement is linear-
ly related to the creep compliance, the same approach
can also be applied to creep measurements on a rota-
tional rheometer, giving access to the low frequency
moduli in a fraction of the time required for oscillatory
testing. Furthermore, the quality of the conversion
process can be improved by fitting a Burgers model to
the time domain data prior to conversion thus minimiz-
ing errors associated with local differentiation, which is
fundamental to the conversion approach.
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Figure 4: Plots of G' and G" against angular frequency using
data generated from microrheology, creep, and oscillation
testing.
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