Applied Rheology: Publications
P.D. Anderson, H.E.H. Meijer
Chaotic mixing analyses by distribution matrices

Appl. Rheol. 10:3 (2000) 119-133

Abstract: Distributive fluid mixing in laminar flows is studied using the concept of concentration distribution mapping matrices, which is based on the original ideas of Spencer & Wiley [1], describing the evolution of the composition of two fluids of identical viscosity with no interfacial tension. The flow domain is divided into cells, and large-scale variations in composition are tracked by following the cell-average concentrations of one fluid using the mapping method of Kruijt et al. [2]. An overview of recent results is presented here where prototype two- and three-dimensional timeperiodic mixing flows are considered. Efficiency of different mixing protocols are compared and for a particular example the (possible) influence of fluid rheology on mixing is studied. Moreover, an extension of the current method including the microstructure of the mixture is illustrated. Although here the method is illustrated making use of these simple flows, more practical, industrial mixers like twin screw extruders can be studied using the same approach. © 2000 Applied Rheology.

DOI 10.3933/ApplRheol-10-119

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 10 (2000) issues:


© Applied Rheology 2018