Applied Rheology: Publications
Christophe Baravian, Audrey Lalante, Alan Parker
Vane rheometry with a large, finite gap

Appl. Rheol. 12:2 (2002) 81-87

Abstract: The vane geometry with a large gap is used to determine the Newtonian, non-Newtonian and viscoelastic properties of complex fluids. We show that when this geometry is carefully characterized, it can be used for precise rheometry. A novel effective cylinder approximation is used to obtain the shear rate and shear stress factors. The effective radius is found to be close to the height of the triangle formed by joining the tips of adjacent blades. This result differs significantly from that of previous work. Flow visualization has been used to confirm that the stream lines bend towards the centre between the blades. These factors can be used to determine the flow curves of non-Newtonian liquids, using Krieger.s power law expansion. The standard procedure for using the vane to determine the yield stress is also carefully investigated and alternative procedures are suggested. © 2002 Applied Rheology.

DOI 10.3933/ApplRheol-12-81

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 12 (2002) issues:

           


© Applied Rheology 2018