Applied Rheology: Publications
Daniel Therriault, Scott White, Jennifer Lewis
Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly

Appl. Rheol. 17:1 (2007) 10112 (8 pages)

Abstract: The rheological behavior of a fugitive organic ink tailored for direct-write assembly of 3D microfluidic devices is investigated. Rheological experiments are carried out to probe the shear storage and loss moduli as well as the complex viscosity as a function of varying temperature, frequency and stress amplitude. Master curves of these functions are assembled using time-temperature superposition. The fugitive ink, comprised of two organic phases, possesses an equilibrium shear elastic modulus nearly two orders of magnitude higher than that of a commercial reference ink at room temperature and a peak in the relaxation spectrum nearly six orders of magnitude longer in time scale. The self-supporting nature of extruded ink filaments is characterized by direct video imaging. Comparison of the experimentally observed behavior to numerical predictions based on Euler-Bernoulli viscoelastic beam analysis yield excellent agreement for slender filaments. © 2007 Applied Rheology.

DOI 10.3933/ApplRheol-17-10112

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 17 (2007) issues:

           


© Applied Rheology 2018