Applied Rheology: Publications
Cigdem Metin, Roger Bonnecaze, Quoc Nguyen
Shear Rheology of Silica Nanoparticle Dispersions

Appl. Rheol. 21:1 (2011) 13146 (8 pages)

Abstract: The effects of particle concentration, particle size and temperature on the shear rheology of suspensions of silica nanoparticles are studied. Sterically or electrostatically stabilized silica nanoparticle dispersions with sizes ranging from 5 - 75 nm and particle volume fractions ranging from 0.22 - 25 % exhibited a constant viscosity within the shear rate range of 1 - 200 s-1. There is a non-linear relationship between the concentration and the viscosity of these dispersions that depends on the radii and surface energy of these nanoparticles.We propose an effective maximum packing fraction model based on the concept of an effective particle radius, which takes into account the thickness of the electrical double layer and the surface coating material. The viscosities of all the dispersions collapse onto a universal curve as a function of the volume fraction normalized by the effective maximum packing fraction. © 2011 Applied Rheology.

DOI 10.3933/ApplRheol-21-13146

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 21 (2011) issues:

           


© Applied Rheology 2018