Applied Rheology: Publications
Yannick Manon, Dominique Anne-Archard, Jean-Louis Uribelarrea, Carole Molina-Jouve, Luc Fillaudeau
Physical and biological study of cell cultures in a bioreactor: on-line and off-line rheological analyses

Appl. Rheol. 21:3 (2011) 35167 (11 pages)

Abstract: Rheological behaviour of culture broth stands as a fundamental parameter in bioprocess performances because it affects simultaneously the heat and mass transfer as well as the flow pattern. On-line measurements of rheological behaviour are hardly compatible with the operating condition with respect to accurate and stringent conditions imposed by cell culture strategy. Our scientific and technical objectives are (i) to develop and identify an experimental device enabling on-line rheometry and (ii) to discuss and compare on-line and off-line measurements. In this aim, a bioreactor was equipped with a derivation loop including a specific on-line rheometric device as well as additional physical and biological measurements (specific density, mass flow rate, electrical conductivity, pH,pO2 and temperature) during microbial cell cultures. In a first time, friction curves of calibrated ducts were established with Newtonian and non-Newtonian shear-thinning fluids. In a second time, axenic cultures with two microorganisms (bacteria and yeast exhibiting different sizes) were investigated in pure oxidative culture in order to produce biomass under high cell concentrations: ~ 40 to 110 gCDW/l for E. coli (bacteria) and ~ 75 to 105 gCDW/l for Y. lipolytica (yeast). Cell broths exhibited Newtonian behaviour for E. coli and shear-thinning behaviour for Y. lipolytica, which were both dependant on biomass concentration. On-line and off-line rheological measurements are consistent for E. coli and Y. lipolytica, but significantly differed. On-line estimated viscosity appears higher than off-line apparent viscosity. Several assumptions in relation with microorganism physiology and metabolism (size, morphology, surface properties, concentration, biological activity) could be formulated in agreement with scientific literature. On-line rheology brings new insight to investigate complex interaction between physical and biological phenomena. © 2011 Applied Rheology.

DOI 10.3933/ApplRheol-21-35167

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 21 (2011) issues:


© Applied Rheology 2018