Applied Rheology: Publications
Samsun Nahar, Shaik A. K. Jeelani, Erich J. Windhab
Peristaltic flow characterization of a shear thinning fluid through an elastic tube by UVP

Appl. Rheol. 22:4 (2012) 43941 (8 pages)

Abstract: In-vitro small intestinal flow characteristics of a shear thinning fluid are investigated by transient '2-wave'-squeezing of an elastic tube under different speeds of peristalsis. Such peristaltic flow is the essential physiological transport mechanism in the gastro-intestinal tract. The peristalsis involves both expansion and contraction type of flow (crest and trough of a wavelength). We met the challenge of implementing the UVP technique for monitoring the velocity fields during appropriate peristaltic propulsion of a shear thinning fluid through an elastic tube (in vitro modeled small intestine). The higher wave speed of peristalsis results in higher magnitude of back flow velocity (negative) both in the wave crest and trough regions with positive value being adjacent to the tube wall. In addition, the approximated wall shear rates at the wave trough are also found to be higher than those in the wave crest. The higher value of back flow is expected to be responsible for the improved mixing and convection leading to higher mass transport through the intestinal wall. The measured pressure difference between crest and trough of a peristaltic wave increased, as the wave speed got faster. However, the crest region showed a higher pressure compared to the trough region since the magnitude of back flow velocity in the wave trough is found to be much higher compared to that in the wave crest. © 2012 Applied Rheology.

DOI 10.3933/ApplRheol-22-43941

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 22 (2012) issues:


© Applied Rheology 2018