M. Guettari, I. Ben Naceur, G. Kassab, A. Ponton, T. Tajouri
Temperature and concentration induced complex behavior in ternary microemulsion
Appl. Rheol. 23:4 (2013) 44966 (7 pages)Abstract: Viscosity measurements were performed in water/AOT (sodium bis(2-ethylhexyl) sulfoccinate)/isooctane microemulsions as a function of temperature between 25 C and 55 C, molar ratio Wo = water/AOT ranging from 3 to 45 and three values of AOT/isooctane volume fractions (Φm = 0.1, 0.15, and 0.2). It was shown that microemulsions behaved as Newtonian fluids in the studied range of shear rate. For a critical molar ratio, Woc, the corresponding viscosity, ηoc, was shown to be constant with temperature but dependent on the micellar concentration. For Wo < Woc, the solutions behaved as simple fluids and the temperature dependence of viscosity was described by an Arrhenius law. The total activation energy was found to be dependent on W with a maximum for Wo = 5. A correlation between the microscopic structure of the reverse micelles and the total activation energy was proposed. However, a complex fluid behavior was observed for Wo > Woc, where the viscosity increased with temperature. For some values of Wo, the viscosity reached a maximum, which could be explained by attractive interdroplet interactions and formation of droplet clusters. © 2013 Applied Rheology.
DOI 10.3933/ApplRheol-23-44966
-- full text PDF
available for subscribers --
-- open access PDF extractavailable for non-subscribers --
You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here ►
Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org
Purchase this article for 20 € ? ►
Appl Rheol 23 (2013) issues:
© Applied Rheology 2018